Internal
problem
ID
[23979]
Book
:
Elementary
Differential
Equations.
By
Lee
Roy
Wilcox
and
Herbert
J.
Curtis.
1961
first
edition.
International
texbook
company.
Scranton,
Penn.
USA.
CAT
number
61-15976
Section
:
Chapter
2.
Differential
equations
of
first
order.
Exercise
at
page
35
Problem
number
:
5
Date
solved
:
Sunday, October 12, 2025 at 05:55:18 AM
CAS
classification
:
[`y=_G(x,y')`]
ode:=x*((x^2+y(x)^2)^(3/2)+2*y(x)^2)+y(x)*((x^2+y(x)^2)^(3/2)-2*x^2)*diff(y(x),x) = 0; dsolve(ode,y(x), singsol=all);
ode=x*( (x^2+y[x]^2)^(3/2) +2*y[x]^2) + y[x]*( (x^2+y[x]^2)^(3/2) -2*x^2 )*D[y[x],{x,1}]==0; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
Too large to display
from sympy import * x = symbols("x") y = Function("y") ode = Eq(x*((x**2 + y(x)**2)**(3/2) + 2*y(x)**2) + (-2*x**2 + (x**2 + y(x)**2)**(3/2))*y(x)*Derivative(y(x), x),0) ics = {} dsolve(ode,func=y(x),ics=ics)
Timed Out