Internal
problem
ID
[23980]
Book
:
Elementary
Differential
Equations.
By
Lee
Roy
Wilcox
and
Herbert
J.
Curtis.
1961
first
edition.
International
texbook
company.
Scranton,
Penn.
USA.
CAT
number
61-15976
Section
:
Chapter
2.
Differential
equations
of
first
order.
Exercise
at
page
35
Problem
number
:
6
Date
solved
:
Thursday, October 02, 2025 at 09:48:41 PM
CAS
classification
:
[[_homogeneous, `class A`], _rational, _dAlembert]
ode:=x*(6*x^2+14*y(x)^2)+y(x)*(13*x^2+30*y(x)^2)*diff(y(x),x) = 0; dsolve(ode,y(x), singsol=all);
ode=x*( 6*x^2+14*y[x]^2 ) + y[x]*( 13*x^2+30*y[x]^2 )*D[y[x],{x,1}]==0; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(x*(6*x**2 + 14*y(x)**2) + (13*x**2 + 30*y(x)**2)*y(x)*Derivative(y(x), x),0) ics = {} dsolve(ode,func=y(x),ics=ics)
Timed Out