Internal
problem
ID
[23986]
Book
:
Elementary
Differential
Equations.
By
Lee
Roy
Wilcox
and
Herbert
J.
Curtis.
1961
first
edition.
International
texbook
company.
Scranton,
Penn.
USA.
CAT
number
61-15976
Section
:
Chapter
2.
Differential
equations
of
first
order.
Exercise
at
page
38
Problem
number
:
4
Date
solved
:
Thursday, October 02, 2025 at 09:49:16 PM
CAS
classification
:
[[_homogeneous, `class A`], _rational, _dAlembert]
ode:=diff(y(x),x) = 2*x*y(x)/(x^2-y(x)^2); dsolve(ode,y(x), singsol=all);
ode=D[y[x],{x,1}]==2*x*y[x]/(x^2-y[x]^2); ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(-2*x*y(x)/(x**2 - y(x)**2) + Derivative(y(x), x),0) ics = {} dsolve(ode,func=y(x),ics=ics)