88.6.4 problem 4

Internal problem ID [23986]
Book : Elementary Differential Equations. By Lee Roy Wilcox and Herbert J. Curtis. 1961 first edition. International texbook company. Scranton, Penn. USA. CAT number 61-15976
Section : Chapter 2. Differential equations of first order. Exercise at page 38
Problem number : 4
Date solved : Thursday, October 02, 2025 at 09:49:16 PM
CAS classification : [[_homogeneous, `class A`], _rational, _dAlembert]

\begin{align*} y^{\prime }&=\frac {2 x y}{x^{2}-y^{2}} \end{align*}
Maple. Time used: 0.058 (sec). Leaf size: 47
ode:=diff(y(x),x) = 2*x*y(x)/(x^2-y(x)^2); 
dsolve(ode,y(x), singsol=all);
 
\begin{align*} y &= \frac {1-\sqrt {-4 c_1^{2} x^{2}+1}}{2 c_1} \\ y &= \frac {1+\sqrt {-4 c_1^{2} x^{2}+1}}{2 c_1} \\ \end{align*}
Mathematica. Time used: 0.589 (sec). Leaf size: 66
ode=D[y[x],{x,1}]==2*x*y[x]/(x^2-y[x]^2); 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} y(x)&\to \frac {1}{2} \left (e^{c_1}-\sqrt {-4 x^2+e^{2 c_1}}\right )\\ y(x)&\to \frac {1}{2} \left (\sqrt {-4 x^2+e^{2 c_1}}+e^{c_1}\right )\\ y(x)&\to 0 \end{align*}
Sympy. Time used: 0.838 (sec). Leaf size: 44
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(-2*x*y(x)/(x**2 - y(x)**2) + Derivative(y(x), x),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
\[ \left [ y{\left (x \right )} = - \frac {\sqrt {- 4 x^{2} + e^{2 C_{1}}}}{2} + \frac {e^{C_{1}}}{2}, \ y{\left (x \right )} = \frac {\sqrt {- 4 x^{2} + e^{2 C_{1}}}}{2} + \frac {e^{C_{1}}}{2}\right ] \]