Internal
problem
ID
[23987]
Book
:
Elementary
Differential
Equations.
By
Lee
Roy
Wilcox
and
Herbert
J.
Curtis.
1961
first
edition.
International
texbook
company.
Scranton,
Penn.
USA.
CAT
number
61-15976
Section
:
Chapter
2.
Differential
equations
of
first
order.
Exercise
at
page
38
Problem
number
:
5
Date
solved
:
Thursday, October 02, 2025 at 09:49:20 PM
CAS
classification
:
[_rational]
ode:=diff(y(x),x) = (2*x*y(x)+3*y(x))/(x^2+2*y(x)^2); dsolve(ode,y(x), singsol=all);
ode=D[y[x],{x,1}]==(2*x*y[x]+3*y[x])/(x^2+2*y[x]^2); ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
Not solved
from sympy import * x = symbols("x") y = Function("y") ode = Eq(Derivative(y(x), x) - (2*x*y(x) + 3*y(x))/(x**2 + 2*y(x)**2),0) ics = {} dsolve(ode,func=y(x),ics=ics)
NotImplementedError : The given ODE -(2*x + 3)*y(x)/(x**2 + 2*y(x)**2) + Derivative(y(x), x) cannot