Internal
problem
ID
[23998]
Book
:
Elementary
Differential
Equations.
By
Lee
Roy
Wilcox
and
Herbert
J.
Curtis.
1961
first
edition.
International
texbook
company.
Scranton,
Penn.
USA.
CAT
number
61-15976
Section
:
Chapter
2.
Differential
equations
of
first
order.
Exercise
at
page
41
Problem
number
:
3
Date
solved
:
Thursday, October 02, 2025 at 09:50:28 PM
CAS
classification
:
[_exact]
ode:=3*y(x)^2+y(x)*sin(2*x*y(x))+(6*x*y(x)+x*sin(2*x*y(x)))*diff(y(x),x) = 0; dsolve(ode,y(x), singsol=all);
ode=( 3*y[x]^2+y[x]*Sin[2*x*y[x] ] )+( 6*x*y[x] + x*Sin[2*x*y[x]] )*D[y[x],{x,1}]==0; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq((6*x*y(x) + x*sin(2*x*y(x)))*Derivative(y(x), x) + 3*y(x)**2 + y(x)*sin(2*x*y(x)),0) ics = {} dsolve(ode,func=y(x),ics=ics)
Timed Out