Internal
problem
ID
[23999]
Book
:
Elementary
Differential
Equations.
By
Lee
Roy
Wilcox
and
Herbert
J.
Curtis.
1961
first
edition.
International
texbook
company.
Scranton,
Penn.
USA.
CAT
number
61-15976
Section
:
Chapter
2.
Differential
equations
of
first
order.
Exercise
at
page
41
Problem
number
:
4
Date
solved
:
Thursday, October 02, 2025 at 09:51:10 PM
CAS
classification
:
[[_homogeneous, `class C`], _exact, _rational, [_Abel, `2nd type`, `class A`]]
With initial conditions
ode:=2*x+2*y(x)-3+(1-2*y(x)+2*x)*diff(y(x),x) = 0; ic:=[y(1) = 2]; dsolve([ode,op(ic)],y(x), singsol=all);
ode=( 2*x+2*y[x]-3 )+( 1-2*y[x]+2*x )*D[y[x],{x,1}]==0; ic={y[1]==2}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(2*x + (2*x - 2*y(x) + 1)*Derivative(y(x), x) + 2*y(x) - 3,0) ics = {y(1): 2} dsolve(ode,func=y(x),ics=ics)