Internal
problem
ID
[24002]
Book
:
Elementary
Differential
Equations.
By
Lee
Roy
Wilcox
and
Herbert
J.
Curtis.
1961
first
edition.
International
texbook
company.
Scranton,
Penn.
USA.
CAT
number
61-15976
Section
:
Chapter
2.
Differential
equations
of
first
order.
Exercise
at
page
41
Problem
number
:
7
Date
solved
:
Thursday, October 02, 2025 at 09:52:03 PM
CAS
classification
:
[_exact, [_1st_order, `_with_symmetry_[F(x),G(x)]`]]
With initial conditions
ode:=3*x^2*exp(x^3)+exp(2*y(x))+(2*x*exp(2*y(x))-3)*diff(y(x),x) = 0; ic:=[y(0) = 0]; dsolve([ode,op(ic)],y(x), singsol=all);
ode=( 3*x^2*Exp[x^3]+Exp[2*y[x]] )+( 2*x*Exp[2*y[x]]-3 )*D[y[x],{x,1}]==0; ic={y[0]==0}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(3*x**2*exp(x**3) + (2*x*exp(2*y(x)) - 3)*Derivative(y(x), x) + exp(2*y(x)),0) ics = {y(0): 0} dsolve(ode,func=y(x),ics=ics)
NotImplementedError : The given ODE Derivative(y(x), x) - (-3*x**2*exp(x**3) - exp(2*y(x)))/(2*x*exp