Internal
problem
ID
[24001]
Book
:
Elementary
Differential
Equations.
By
Lee
Roy
Wilcox
and
Herbert
J.
Curtis.
1961
first
edition.
International
texbook
company.
Scranton,
Penn.
USA.
CAT
number
61-15976
Section
:
Chapter
2.
Differential
equations
of
first
order.
Exercise
at
page
41
Problem
number
:
6
Date
solved
:
Thursday, October 02, 2025 at 09:51:15 PM
CAS
classification
:
[_exact]
ode:=sec(x-2*y(x))^2+cos(3*y(x)+x)-3*sin(3*x)+(3*cos(3*y(x)+x)-2*sec(x-2*y(x))^2)*diff(y(x),x) = 0; dsolve(ode,y(x), singsol=all);
ode=( Sec[x-2*y[x]]^2+Cos[x+3*y[x]] -3*Sin[3*x] )+( 3*Cos[x+3*y[x]] -2*Sec[x-2*y[x]]^2 )*D[y[x],{x,1}]==0; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
Timed out
from sympy import * x = symbols("x") y = Function("y") ode = Eq((3*cos(x + 3*y(x)) - 2*sec(x - 2*y(x))**2)*Derivative(y(x), x) - 3*sin(3*x) + cos(x + 3*y(x)) + sec(x - 2*y(x))**2,0) ics = {} dsolve(ode,func=y(x),ics=ics)
Timed Out