88.7.6 problem 6

Internal problem ID [24001]
Book : Elementary Differential Equations. By Lee Roy Wilcox and Herbert J. Curtis. 1961 first edition. International texbook company. Scranton, Penn. USA. CAT number 61-15976
Section : Chapter 2. Differential equations of first order. Exercise at page 41
Problem number : 6
Date solved : Thursday, October 02, 2025 at 09:51:15 PM
CAS classification : [_exact]

\begin{align*} \sec \left (x -2 y\right )^{2}+\cos \left (x +3 y\right )-3 \sin \left (3 x \right )+\left (3 \cos \left (x +3 y\right )-2 \sec \left (x -2 y\right )^{2}\right ) y^{\prime }&=0 \end{align*}
Maple. Time used: 6.245 (sec). Leaf size: 2021
ode:=sec(x-2*y(x))^2+cos(3*y(x)+x)-3*sin(3*x)+(3*cos(3*y(x)+x)-2*sec(x-2*y(x))^2)*diff(y(x),x) = 0; 
dsolve(ode,y(x), singsol=all);
 
\[ \text {Expression too large to display} \]
Mathematica
ode=( Sec[x-2*y[x]]^2+Cos[x+3*y[x]] -3*Sin[3*x] )+( 3*Cos[x+3*y[x]] -2*Sec[x-2*y[x]]^2 )*D[y[x],{x,1}]==0; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 

Timed out

Sympy
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq((3*cos(x + 3*y(x)) - 2*sec(x - 2*y(x))**2)*Derivative(y(x), x) - 3*sin(3*x) + cos(x + 3*y(x)) + sec(x - 2*y(x))**2,0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
Timed Out