Internal
problem
ID
[24004]
Book
:
Elementary
Differential
Equations.
By
Lee
Roy
Wilcox
and
Herbert
J.
Curtis.
1961
first
edition.
International
texbook
company.
Scranton,
Penn.
USA.
CAT
number
61-15976
Section
:
Chapter
2.
Differential
equations
of
first
order.
Exercise
at
page
41
Problem
number
:
9
Date
solved
:
Thursday, October 02, 2025 at 09:52:19 PM
CAS
classification
:
[_rational]
ode:=(8*x^4*y(x)+12*x^3*y(x)^2+2)/(2*x+3*y(x))+(2*x^5+3*x^4*y(x)+3)/(1+x^2*y(x)^4)*diff(y(x),x) = 0; dsolve(ode,y(x), singsol=all);
ode=( (8*x^4*y[x]+12*x^3*y[x]^2+2)/(2*x+3*y[x]) )+( (2*x^5+3*x^4*y[x]+3)/(1+x^2*y[x]^4) )*D[y[x],{x,1}]==0; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
Not solved
from sympy import * x = symbols("x") y = Function("y") ode = Eq((2*x**5 + 3*x**4*y(x) + 3)*Derivative(y(x), x)/(x**2*y(x)**4 + 1) + (8*x**4*y(x) + 12*x**3*y(x)**2 + 2)/(2*x + 3*y(x)),0) ics = {} dsolve(ode,func=y(x),ics=ics)
Timed Out