Internal
problem
ID
[24005]
Book
:
Elementary
Differential
Equations.
By
Lee
Roy
Wilcox
and
Herbert
J.
Curtis.
1961
first
edition.
International
texbook
company.
Scranton,
Penn.
USA.
CAT
number
61-15976
Section
:
Chapter
2.
Differential
equations
of
first
order.
Exercise
at
page
41
Problem
number
:
10
Date
solved
:
Thursday, October 02, 2025 at 09:53:40 PM
CAS
classification
:
[_exact, _rational]
ode:=(x^2*y(x)^5+y(x)^2+y(x))/(1+x^2*y(x)^4)+(x^3*y(x)^4+2*x*y(x)+x)/(1+x^2*y(x)^4)*diff(y(x),x) = 0; dsolve(ode,y(x), singsol=all);
ode=( (x^2*y[x]^5+y[x]^2+y[x])/(1+x^2*y[x]^4) )+( (x^3*y[x]^4+2*x*y[x]+x)/(1+x^2*y[x]^4) )*D[y[x],{x,1}]==0; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq((x**2*y(x)**5 + y(x)**2 + y(x))/(x**2*y(x)**4 + 1) + (x**3*y(x)**4 + 2*x*y(x) + x)*Derivative(y(x), x)/(x**2*y(x)**4 + 1),0) ics = {} dsolve(ode,func=y(x),ics=ics)
Timed Out