Internal
problem
ID
[24007]
Book
:
Elementary
Differential
Equations.
By
Lee
Roy
Wilcox
and
Herbert
J.
Curtis.
1961
first
edition.
International
texbook
company.
Scranton,
Penn.
USA.
CAT
number
61-15976
Section
:
Chapter
2.
Differential
equations
of
first
order.
Exercise
at
page
41
Problem
number
:
12
Date
solved
:
Thursday, October 02, 2025 at 09:53:43 PM
CAS
classification
:
[_rational]
ode:=2*x^2*y(x)-y(x)^2+6*x^3*y(x)^3+(2*x^4*y(x)^2-x^3)*diff(y(x),x) = 0; dsolve(ode,y(x), singsol=all);
ode=( 2*x^2*y[x]-y[x]^2+6*x^3*y[x]^3 )+( 2*x^4*y[x]^2-x^3 )*D[y[x],{x,1}]==0; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(6*x**3*y(x)**3 + 2*x**2*y(x) + (2*x**4*y(x)**2 - x**3)*Derivative(y(x), x) - y(x)**2,0) ics = {} dsolve(ode,func=y(x),ics=ics)
Timed Out