Internal
problem
ID
[24006]
Book
:
Elementary
Differential
Equations.
By
Lee
Roy
Wilcox
and
Herbert
J.
Curtis.
1961
first
edition.
International
texbook
company.
Scranton,
Penn.
USA.
CAT
number
61-15976
Section
:
Chapter
2.
Differential
equations
of
first
order.
Exercise
at
page
41
Problem
number
:
11
Date
solved
:
Thursday, October 02, 2025 at 09:53:41 PM
CAS
classification
:
[_rational, [_Abel, `2nd type`, `class B`]]
ode:=3*x-2*y(x)+2*y(x)^2+(2*x*y(x)-x)*diff(y(x),x) = 0; dsolve(ode,y(x), singsol=all);
ode=( 3*x-2*y[x]+2*y[x]^2 )+( 2*x*y[x]-x )*D[y[x],{x,1}]==0; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(3*x + (2*x*y(x) - x)*Derivative(y(x), x) + 2*y(x)**2 - 2*y(x),0) ics = {} dsolve(ode,func=y(x),ics=ics)