Internal
problem
ID
[24014]
Book
:
Elementary
Differential
Equations.
By
Lee
Roy
Wilcox
and
Herbert
J.
Curtis.
1961
first
edition.
International
texbook
company.
Scranton,
Penn.
USA.
CAT
number
61-15976
Section
:
Chapter
2.
Differential
equations
of
first
order.
Exercise
at
page
44
Problem
number
:
6
Date
solved
:
Thursday, October 02, 2025 at 09:54:09 PM
CAS
classification
:
[_rational, [_1st_order, `_with_symmetry_[F(x)*G(y),0]`]]
ode:=2*x*y(x)^2+2*x+(6*y(x)^3+2*y(x)+4*x^2*y(x))*diff(y(x),x) = 0; dsolve(ode,y(x), singsol=all);
ode=( 2*x*y[x]^2 +2*x )+( 6*y[x]^3 +2*y[x]+4*x^2*y[x] )*D[y[x],{x,1}]==0; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
Too large to display
from sympy import * x = symbols("x") y = Function("y") ode = Eq(2*x*y(x)**2 + 2*x + (4*x**2*y(x) + 6*y(x)**3 + 2*y(x))*Derivative(y(x), x),0) ics = {} dsolve(ode,func=y(x),ics=ics)
Timed Out