Internal
problem
ID
[24015]
Book
:
Elementary
Differential
Equations.
By
Lee
Roy
Wilcox
and
Herbert
J.
Curtis.
1961
first
edition.
International
texbook
company.
Scranton,
Penn.
USA.
CAT
number
61-15976
Section
:
Chapter
2.
Differential
equations
of
first
order.
Exercise
at
page
44
Problem
number
:
7
Date
solved
:
Thursday, October 02, 2025 at 09:54:11 PM
CAS
classification
:
[[_1st_order, `_with_symmetry_[F(x)*G(y),0]`]]
ode:=3*x^2*y(x)*ln(y(x))+(2*x^3+2*y(x)^3+3*y(x)^3*ln(y(x))^2)*diff(y(x),x) = 0; dsolve(ode,y(x), singsol=all);
ode=( 3*x^2*y[x]*Log[y[x]] )+( 2*x^3 +2*y[x]^3 + 3*y[x]^3*(Log[y[x]])^2 )*D[y[x],{x,1}]==0; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(3*x**2*y(x)*log(y(x)) + (2*x**3 + 3*y(x)**3*log(y(x))**2 + 2*y(x)**3)*Derivative(y(x), x),0) ics = {} dsolve(ode,func=y(x),ics=ics)