Internal
problem
ID
[24018]
Book
:
Elementary
Differential
Equations.
By
Lee
Roy
Wilcox
and
Herbert
J.
Curtis.
1961
first
edition.
International
texbook
company.
Scranton,
Penn.
USA.
CAT
number
61-15976
Section
:
Chapter
2.
Differential
equations
of
first
order.
Exercise
at
page
44
Problem
number
:
10
Date
solved
:
Thursday, October 02, 2025 at 09:54:16 PM
CAS
classification
:
[[_homogeneous, `class G`], _rational, [_Abel, `2nd type`, `class B`]]
ode:=x*y(x)^2+(3-2*x^2*y(x))*diff(y(x),x) = 0; dsolve(ode,y(x), singsol=all);
ode=( x*y[x]^2 )+( 3-2*x^2*y[x] )*D[y[x],{x,1}]==0; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(x*y(x)**2 + (-2*x**2*y(x) + 3)*Derivative(y(x), x),0) ics = {} dsolve(ode,func=y(x),ics=ics)