88.8.11 problem 11

Internal problem ID [24019]
Book : Elementary Differential Equations. By Lee Roy Wilcox and Herbert J. Curtis. 1961 first edition. International texbook company. Scranton, Penn. USA. CAT number 61-15976
Section : Chapter 2. Differential equations of first order. Exercise at page 44
Problem number : 11
Date solved : Thursday, October 02, 2025 at 09:54:20 PM
CAS classification : [[_homogeneous, `class G`], _rational, [_Abel, `2nd type`, `class B`]]

\begin{align*} y+2 x^{3}+\left (2 x -\frac {x^{4}}{y}\right ) y^{\prime }&=0 \end{align*}
Maple. Time used: 0.020 (sec). Leaf size: 25
ode:=y(x)+2*x^3+(2*x-x^4/y(x))*diff(y(x),x) = 0; 
dsolve(ode,y(x), singsol=all);
 
\[ y = x^{2} c_1 \operatorname {RootOf}\left (x \,\textit {\_Z}^{7}-7 c_1 \,\textit {\_Z}^{5}+x \right )^{5} \]
Mathematica. Time used: 10.052 (sec). Leaf size: 666
ode=( y[x]+2*x^3 )+( 2*x-x^4/y[x] )*D[y[x],{x,1}]==0; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} y(x)&\to \text {Root}\left [\text {$\#$1}^7 x+16807 \text {$\#$1}^5 e^{7 c_1}-12005 \text {$\#$1}^4 e^{7 c_1} x^3+3430 \text {$\#$1}^3 e^{7 c_1} x^6-490 \text {$\#$1}^2 e^{7 c_1} x^9+35 \text {$\#$1} e^{7 c_1} x^{12}-e^{7 c_1} x^{15}\&,1\right ]\\ y(x)&\to \text {Root}\left [\text {$\#$1}^7 x+16807 \text {$\#$1}^5 e^{7 c_1}-12005 \text {$\#$1}^4 e^{7 c_1} x^3+3430 \text {$\#$1}^3 e^{7 c_1} x^6-490 \text {$\#$1}^2 e^{7 c_1} x^9+35 \text {$\#$1} e^{7 c_1} x^{12}-e^{7 c_1} x^{15}\&,2\right ]\\ y(x)&\to \text {Root}\left [\text {$\#$1}^7 x+16807 \text {$\#$1}^5 e^{7 c_1}-12005 \text {$\#$1}^4 e^{7 c_1} x^3+3430 \text {$\#$1}^3 e^{7 c_1} x^6-490 \text {$\#$1}^2 e^{7 c_1} x^9+35 \text {$\#$1} e^{7 c_1} x^{12}-e^{7 c_1} x^{15}\&,3\right ]\\ y(x)&\to \text {Root}\left [\text {$\#$1}^7 x+16807 \text {$\#$1}^5 e^{7 c_1}-12005 \text {$\#$1}^4 e^{7 c_1} x^3+3430 \text {$\#$1}^3 e^{7 c_1} x^6-490 \text {$\#$1}^2 e^{7 c_1} x^9+35 \text {$\#$1} e^{7 c_1} x^{12}-e^{7 c_1} x^{15}\&,4\right ]\\ y(x)&\to \text {Root}\left [\text {$\#$1}^7 x+16807 \text {$\#$1}^5 e^{7 c_1}-12005 \text {$\#$1}^4 e^{7 c_1} x^3+3430 \text {$\#$1}^3 e^{7 c_1} x^6-490 \text {$\#$1}^2 e^{7 c_1} x^9+35 \text {$\#$1} e^{7 c_1} x^{12}-e^{7 c_1} x^{15}\&,5\right ]\\ y(x)&\to \text {Root}\left [\text {$\#$1}^7 x+16807 \text {$\#$1}^5 e^{7 c_1}-12005 \text {$\#$1}^4 e^{7 c_1} x^3+3430 \text {$\#$1}^3 e^{7 c_1} x^6-490 \text {$\#$1}^2 e^{7 c_1} x^9+35 \text {$\#$1} e^{7 c_1} x^{12}-e^{7 c_1} x^{15}\&,6\right ]\\ y(x)&\to \text {Root}\left [\text {$\#$1}^7 x+16807 \text {$\#$1}^5 e^{7 c_1}-12005 \text {$\#$1}^4 e^{7 c_1} x^3+3430 \text {$\#$1}^3 e^{7 c_1} x^6-490 \text {$\#$1}^2 e^{7 c_1} x^9+35 \text {$\#$1} e^{7 c_1} x^{12}-e^{7 c_1} x^{15}\&,7\right ] \end{align*}
Sympy
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(2*x**3 + (-x**4/y(x) + 2*x)*Derivative(y(x), x) + y(x),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
NotImplementedError : The given ODE Derivative(y(x), x) - (2*x**3 + y(x))*y(x)/(x*(x**3 - 2*y(x))) c