88.8.12 problem 12

Internal problem ID [24020]
Book : Elementary Differential Equations. By Lee Roy Wilcox and Herbert J. Curtis. 1961 first edition. International texbook company. Scranton, Penn. USA. CAT number 61-15976
Section : Chapter 2. Differential equations of first order. Exercise at page 44
Problem number : 12
Date solved : Thursday, October 02, 2025 at 09:54:23 PM
CAS classification : [_rational, [_Abel, `2nd type`, `class B`]]

\begin{align*} x^{3}+y^{2}+\left (y x -3 x^{2}\right ) y^{\prime }&=0 \end{align*}
Maple
ode:=x^3+y(x)^2+(x*y(x)-3*x^2)*diff(y(x),x) = 0; 
dsolve(ode,y(x), singsol=all);
 
\[ \text {No solution found} \]
Mathematica
ode=( x^3+y[x]^2 )+( x*y[x]-3*x^2 )*D[y[x],{x,1}]==0; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 

Not solved

Sympy
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(x**3 + (-3*x**2 + x*y(x))*Derivative(y(x), x) + y(x)**2,0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
Timed Out