Internal
problem
ID
[24192]
Book
:
Elementary
Differential
Equations.
By
Lee
Roy
Wilcox
and
Herbert
J.
Curtis.
1961
first
edition.
International
texbook
company.
Scranton,
Penn.
USA.
CAT
number
61-15976
Section
:
Chapter
5.
Special
Techniques
for
Linear
Equations.
Miscellaneous
Exercises
at
page
162
Problem
number
:
20
Date
solved
:
Thursday, October 02, 2025 at 10:00:39 PM
CAS
classification
:
system_of_ODEs
ode:=[x(t)-y(t)+diff(z(t),t) = 0, diff(x(t),t)-y(t) = 1, diff(y(t),t)-y(t)+z(t) = 0]; dsolve(ode);
ode={x[t]-y[t]+D[z[t],{t,1}]==0,D[x[t],t]-y[t]==1,D[y[t],t]-y[t]+z[t]==0}; ic={}; DSolve[{ode,ic},{x[t],y[t],z[t]},t,IncludeSingularSolutions->True]
from sympy import * t = symbols("t") x = Function("x") y = Function("y") z = Function("z") ode=[Eq(x(t) - y(t) + Derivative(z(t), t),0),Eq(-y(t) + Derivative(x(t), t) - 1,0),Eq(-y(t) + z(t) + Derivative(y(t), t),0)] ics = {} dsolve(ode,func=[x(t),y(t),z(t)],ics=ics)