Internal
problem
ID
[24193]
Book
:
Elementary
Differential
Equations.
By
Lee
Roy
Wilcox
and
Herbert
J.
Curtis.
1961
first
edition.
International
texbook
company.
Scranton,
Penn.
USA.
CAT
number
61-15976
Section
:
Chapter
5.
Special
Techniques
for
Linear
Equations.
Miscellaneous
Exercises
at
page
162
Problem
number
:
22
Date
solved
:
Thursday, October 02, 2025 at 10:00:40 PM
CAS
classification
:
[[_2nd_order, _linear, _nonhomogeneous]]
ode:=x^2*diff(diff(y(x),x),x)+a*x*diff(y(x),x)+b*y(x) = f(x); dsolve(ode,y(x), singsol=all);
ode=x^2*D[y[x],{x,2}]+a*x*D[y[x],{x,1}]+b*y[x]==f[x]; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") a = symbols("a") b = symbols("b") y = Function("y") f = Function("f") ode = Eq(a*x*Derivative(y(x), x) + b*y(x) + x**2*Derivative(y(x), (x, 2)) - f(x),0) ics = {} dsolve(ode,func=y(x),ics=ics)
Timed Out