89.3.14 problem 14

Internal problem ID [24312]
Book : A short course in Differential Equations. Earl D. Rainville. Second edition. 1958. Macmillan Publisher, NY. CAT 58-5010
Section : Chapter 2. Equations of the first order and first degree. Exercises at page 34
Problem number : 14
Date solved : Thursday, October 02, 2025 at 10:16:50 PM
CAS classification : [_exact, _rational]

\begin{align*} \left (6+3 y x -4 y^{3}\right ) x +\left (x^{3}-6 x^{2} y^{2}-1\right ) y^{\prime }&=0 \end{align*}
Maple. Time used: 0.004 (sec). Leaf size: 490
ode:=x*(3*x*y(x)-4*y(x)^3+6)+(x^3-6*x^2*y(x)^2-1)*diff(y(x),x) = 0; 
dsolve(ode,y(x), singsol=all);
 
\begin{align*} y &= \frac {6 x^{3}+\left (162 x^{3}+6 \sqrt {3}\, \sqrt {-2 x^{9}+249 x^{6}+162 c_1 \,x^{4}+27 c_1^{2} x^{2}-6 x^{3}+2}+54 c_1 x \right )^{{2}/{3}}-6}{6 x \left (162 x^{3}+6 \sqrt {3}\, \sqrt {-2 x^{9}+249 x^{6}+162 c_1 \,x^{4}+27 c_1^{2} x^{2}-6 x^{3}+2}+54 c_1 x \right )^{{1}/{3}}} \\ y &= \frac {6 i \sqrt {3}\, x^{3}-i \left (162 x^{3}+6 \sqrt {3}\, \sqrt {-2 x^{9}+249 x^{6}+162 c_1 \,x^{4}+27 c_1^{2} x^{2}-6 x^{3}+2}+54 c_1 x \right )^{{2}/{3}} \sqrt {3}-6 x^{3}-\left (162 x^{3}+6 \sqrt {3}\, \sqrt {-2 x^{9}+249 x^{6}+162 c_1 \,x^{4}+27 c_1^{2} x^{2}-6 x^{3}+2}+54 c_1 x \right )^{{2}/{3}}-6 i \sqrt {3}+6}{12 x \left (162 x^{3}+6 \sqrt {3}\, \sqrt {-2 x^{9}+249 x^{6}+162 c_1 \,x^{4}+27 c_1^{2} x^{2}-6 x^{3}+2}+54 c_1 x \right )^{{1}/{3}}} \\ y &= -\frac {6 i \sqrt {3}\, x^{3}-i \left (162 x^{3}+6 \sqrt {3}\, \sqrt {-2 x^{9}+249 x^{6}+162 c_1 \,x^{4}+27 c_1^{2} x^{2}-6 x^{3}+2}+54 c_1 x \right )^{{2}/{3}} \sqrt {3}+6 x^{3}+\left (162 x^{3}+6 \sqrt {3}\, \sqrt {-2 x^{9}+249 x^{6}+162 c_1 \,x^{4}+27 c_1^{2} x^{2}-6 x^{3}+2}+54 c_1 x \right )^{{2}/{3}}-6 i \sqrt {3}-6}{12 \left (162 x^{3}+6 \sqrt {3}\, \sqrt {-2 x^{9}+249 x^{6}+162 c_1 \,x^{4}+27 c_1^{2} x^{2}-6 x^{3}+2}+54 c_1 x \right )^{{1}/{3}} x} \\ \end{align*}
Mathematica. Time used: 60.072 (sec). Leaf size: 424
ode=x*( 3*x*y[x]-4*y[x]^3+6  )+ ( x^3-6*x^2*y[x]^2-1 )*D[y[x],x]==0; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} y(x)&\to -\frac {\sqrt [3]{2} \left (x^3-1\right )}{\sqrt [3]{-324 x^6+108 c_1 x^4+\sqrt {-864 x^6 \left (x^3-1\right )^3+\left (-324 x^6+108 c_1 x^4\right ){}^2}}}-\frac {\sqrt [3]{-324 x^6+108 c_1 x^4+\sqrt {-864 x^6 \left (x^3-1\right )^3+\left (-324 x^6+108 c_1 x^4\right ){}^2}}}{6 \sqrt [3]{2} x^2}\\ y(x)&\to \frac {\left (1+i \sqrt {3}\right ) \left (x^3-1\right )}{2^{2/3} \sqrt [3]{-324 x^6+108 c_1 x^4+\sqrt {-864 x^6 \left (x^3-1\right )^3+\left (-324 x^6+108 c_1 x^4\right ){}^2}}}+\frac {\left (1-i \sqrt {3}\right ) \sqrt [3]{-324 x^6+108 c_1 x^4+\sqrt {-864 x^6 \left (x^3-1\right )^3+\left (-324 x^6+108 c_1 x^4\right ){}^2}}}{12 \sqrt [3]{2} x^2}\\ y(x)&\to \frac {\left (1-i \sqrt {3}\right ) \left (x^3-1\right )}{2^{2/3} \sqrt [3]{-324 x^6+108 c_1 x^4+\sqrt {-864 x^6 \left (x^3-1\right )^3+\left (-324 x^6+108 c_1 x^4\right ){}^2}}}+\frac {\left (1+i \sqrt {3}\right ) \sqrt [3]{-324 x^6+108 c_1 x^4+\sqrt {-864 x^6 \left (x^3-1\right )^3+\left (-324 x^6+108 c_1 x^4\right ){}^2}}}{12 \sqrt [3]{2} x^2} \end{align*}
Sympy
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(x*(3*x*y(x) - 4*y(x)**3 + 6) + (x**3 - 6*x**2*y(x)**2 - 1)*Derivative(y(x), x),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
Timed Out