Internal
problem
ID
[24313]
Book
:
A
short
course
in
Differential
Equations.
Earl
D.
Rainville.
Second
edition.
1958.
Macmillan
Publisher,
NY.
CAT
58-5010
Section
:
Chapter
2.
Equations
of
the
first
order
and
first
degree.
Exercises
at
page
34
Problem
number
:
15
Date
solved
:
Thursday, October 02, 2025 at 10:16:52 PM
CAS
classification
:
[_exact]
ode:=sin(y(x))-2*x*cos(y(x))^2+x*cos(y(x))*(2*x*sin(y(x))+1)*diff(y(x),x) = 0; dsolve(ode,y(x), singsol=all);
ode=( Sin[y[x]]-2*x*Cos[y[x]]^2 )+ x*Cos[y[x]]*(2*x*Sin[y[x]]+1)*D[y[x],x]==0; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(x*(2*x*sin(y(x)) + 1)*cos(y(x))*Derivative(y(x), x) - 2*x*cos(y(x))**2 + sin(y(x)),0) ics = {} dsolve(ode,func=y(x),ics=ics)
Timed Out