89.20.15 problem 15

Internal problem ID [24771]
Book : A short course in Differential Equations. Earl D. Rainville. Second edition. 1958. Macmillan Publisher, NY. CAT 58-5010
Section : Chapter 10. Nonhomogeneous Equations: Operational methods. Oral Exercises at page 154
Problem number : 15
Date solved : Thursday, October 02, 2025 at 10:47:52 PM
CAS classification : [[_2nd_order, _linear, _nonhomogeneous]]

\begin{align*} y^{\prime \prime }+9 y&=\sin \left (3 x \right ) \end{align*}
Maple. Time used: 0.002 (sec). Leaf size: 24
ode:=diff(diff(y(x),x),x)+9*y(x) = sin(3*x); 
dsolve(ode,y(x), singsol=all);
 
\[ y = \frac {\left (6 c_1 -x \right ) \cos \left (3 x \right )}{6}+\sin \left (3 x \right ) c_2 \]
Mathematica. Time used: 0.014 (sec). Leaf size: 33
ode=D[y[x],{x,2}]+9*y[x]== Sin[3*x]; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} y(x)&\to \left (-\frac {x}{6}+c_1\right ) \cos (3 x)+\frac {1}{36} (1+36 c_2) \sin (3 x) \end{align*}
Sympy. Time used: 0.068 (sec). Leaf size: 19
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(9*y(x) - sin(3*x) + Derivative(y(x), (x, 2)),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
\[ y{\left (x \right )} = C_{2} \sin {\left (3 x \right )} + \left (C_{1} - \frac {x}{6}\right ) \cos {\left (3 x \right )} \]