89.20.16 problem 16

Internal problem ID [24772]
Book : A short course in Differential Equations. Earl D. Rainville. Second edition. 1958. Macmillan Publisher, NY. CAT 58-5010
Section : Chapter 10. Nonhomogeneous Equations: Operational methods. Oral Exercises at page 154
Problem number : 16
Date solved : Thursday, October 02, 2025 at 10:47:52 PM
CAS classification : [[_2nd_order, _linear, _nonhomogeneous]]

\begin{align*} y^{\prime \prime }+36 y&=\cos \left (6 x \right ) \end{align*}
Maple. Time used: 0.002 (sec). Leaf size: 27
ode:=diff(diff(y(x),x),x)+36*y(x) = cos(6*x); 
dsolve(ode,y(x), singsol=all);
 
\[ y = \frac {\left (72 c_1 +1\right ) \cos \left (6 x \right )}{72}+\frac {\sin \left (6 x \right ) \left (x +12 c_2 \right )}{12} \]
Mathematica. Time used: 0.041 (sec). Leaf size: 31
ode=D[y[x],{x,2}]+36*y[x]== Cos[6*x]; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} y(x)&\to \left (\frac {1}{144}+c_1\right ) \cos (6 x)+\frac {1}{12} (x+12 c_2) \sin (6 x) \end{align*}
Sympy. Time used: 0.060 (sec). Leaf size: 19
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(36*y(x) - cos(6*x) + Derivative(y(x), (x, 2)),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
\[ y{\left (x \right )} = C_{2} \cos {\left (6 x \right )} + \left (C_{1} + \frac {x}{12}\right ) \sin {\left (6 x \right )} \]