89.28.14 problem 14

Internal problem ID [24902]
Book : A short course in Differential Equations. Earl D. Rainville. Second edition. 1958. Macmillan Publisher, NY. CAT 58-5010
Section : Chapter 16. Equations of order one and higher degree. Exercises at page 229
Problem number : 14
Date solved : Thursday, October 02, 2025 at 10:49:17 PM
CAS classification : [_quadrature]

\begin{align*} x y {y^{\prime }}^{2}+\left (x y^{2}-1\right ) y^{\prime }-y&=0 \end{align*}
Maple. Time used: 0.004 (sec). Leaf size: 34
ode:=x*y(x)*diff(y(x),x)^2+(x*y(x)^2-1)*diff(y(x),x)-y(x) = 0; 
dsolve(ode,y(x), singsol=all);
 
\begin{align*} y &= \sqrt {2 \ln \left (x \right )+c_1} \\ y &= -\sqrt {2 \ln \left (x \right )+c_1} \\ y &= c_1 \,{\mathrm e}^{-x} \\ \end{align*}
Mathematica. Time used: 0.061 (sec). Leaf size: 57
ode=x*y[x]*D[y[x],x]^2 + (x*y[x]^2-1)*D[y[x],x]-y[x]==0; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} y(x)&\to c_1 e^{-x}\\ y(x)&\to -\sqrt {2} \sqrt {\log (x)+c_1}\\ y(x)&\to \sqrt {2} \sqrt {\log (x)+c_1}\\ y(x)&\to 0 \end{align*}
Sympy. Time used: 0.381 (sec). Leaf size: 32
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(x*y(x)*Derivative(y(x), x)**2 + (x*y(x)**2 - 1)*Derivative(y(x), x) - y(x),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
\[ \left [ y{\left (x \right )} = - \sqrt {C_{1} + 2 \log {\left (x \right )}}, \ y{\left (x \right )} = \sqrt {C_{1} + 2 \log {\left (x \right )}}, \ y{\left (x \right )} = C_{1} e^{- x}\right ] \]