Internal
problem
ID
[24906]
Book
:
A
short
course
in
Differential
Equations.
Earl
D.
Rainville.
Second
edition.
1958.
Macmillan
Publisher,
NY.
CAT
58-5010
Section
:
Chapter
16.
Equations
of
order
one
and
higher
degree.
Exercises
at
page
229
Problem
number
:
18
Date
solved
:
Thursday, October 02, 2025 at 10:49:23 PM
CAS
classification
:
[_quadrature]
ode:=x*diff(y(x),x)^3-(x^2+x+y(x))*diff(y(x),x)^2+(x^2+x*y(x)+y(x))*diff(y(x),x)-x*y(x) = 0; dsolve(ode,y(x), singsol=all);
ode=x*D[y[x],x]^3-(x^2+x+y[x])*D[y[x],x]^2+(x^2+x*y[x]+y[x])*D[y[x],x]-x*y[x]==0; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(-x*y(x) + x*Derivative(y(x), x)**3 - (x**2 + x + y(x))*Derivative(y(x), x)**2 + (x**2 + x*y(x) + y(x))*Derivative(y(x), x),0) ics = {} dsolve(ode,func=y(x),ics=ics)