Internal
problem
ID
[24905]
Book
:
A
short
course
in
Differential
Equations.
Earl
D.
Rainville.
Second
edition.
1958.
Macmillan
Publisher,
NY.
CAT
58-5010
Section
:
Chapter
16.
Equations
of
order
one
and
higher
degree.
Exercises
at
page
229
Problem
number
:
17
Date
solved
:
Thursday, October 02, 2025 at 10:49:22 PM
CAS
classification
:
[[_homogeneous, `class A`], _rational, _Bernoulli]
ode:=x*y(x)*(x^2+y(x)^2)*(diff(y(x),x)^2-1) = diff(y(x),x)*(x^4+x^2*y(x)^2+y(x)^4); dsolve(ode,y(x), singsol=all);
ode=x*y[x]*(x^2+y[x]^2)*(D[y[x],x]^2-1)==D[y[x],x]*(x^4+x^2*y[x]^2+y[x]^4); ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(x*(x**2 + y(x)**2)*(Derivative(y(x), x)**2 - 1)*y(x) - (x**4 + x**2*y(x)**2 + y(x)**4)*Derivative(y(x), x),0) ics = {} dsolve(ode,func=y(x),ics=ics)