89.31.2 problem 2

Internal problem ID [24947]
Book : A short course in Differential Equations. Earl D. Rainville. Second edition. 1958. Macmillan Publisher, NY. CAT 58-5010
Section : Chapter 16. Equations of order one and higher degree. Exercises at page 246
Problem number : 2
Date solved : Thursday, October 02, 2025 at 11:36:27 PM
CAS classification : [[_homogeneous, `class G`]]

\begin{align*} 9 {y^{\prime }}^{2} x +3 y y^{\prime }+y^{8}&=0 \end{align*}
Maple. Time used: 0.024 (sec). Leaf size: 169
ode:=9*x*diff(y(x),x)^2+3*y(x)*diff(y(x),x)+y(x)^8 = 0; 
dsolve(ode,y(x), singsol=all);
 
\begin{align*} y &= -\frac {2^{{2}/{3}}}{2 x^{{1}/{6}}} \\ y &= \frac {2^{{2}/{3}}}{2 x^{{1}/{6}}} \\ y &= -\frac {\left (1+i \sqrt {3}\right ) 2^{{2}/{3}}}{4 x^{{1}/{6}}} \\ y &= \frac {\left (i \sqrt {3}-1\right ) 2^{{2}/{3}}}{4 x^{{1}/{6}}} \\ y &= -\frac {\left (i \sqrt {3}-1\right ) 2^{{2}/{3}}}{4 x^{{1}/{6}}} \\ y &= \frac {\left (1+i \sqrt {3}\right ) 2^{{2}/{3}}}{4 x^{{1}/{6}}} \\ y &= 0 \\ y &= \frac {\operatorname {RootOf}\left (-\ln \left (x \right )+c_1 +6 \int _{}^{\textit {\_Z}}\frac {1}{\textit {\_a} \sqrt {-4 \textit {\_a}^{6}+1}}d \textit {\_a} \right )}{x^{{1}/{6}}} \\ y &= \frac {\operatorname {RootOf}\left (-\ln \left (x \right )+c_1 -6 \int _{}^{\textit {\_Z}}\frac {1}{\textit {\_a} \sqrt {-4 \textit {\_a}^{6}+1}}d \textit {\_a} \right )}{x^{{1}/{6}}} \\ \end{align*}
Mathematica. Time used: 0.398 (sec). Leaf size: 306
ode=9*x*D[y[x],x]^2+3*y[x]*D[y[x],x]+y[x]^8==0; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} y(x)&\to -\frac {\sqrt [3]{-2} e^{\frac {c_1}{6}}}{\sqrt [3]{4 x+e^{c_1}}}\\ y(x)&\to \frac {\sqrt [3]{-2} e^{\frac {c_1}{6}}}{\sqrt [3]{4 x+e^{c_1}}}\\ y(x)&\to -\frac {\sqrt [3]{2} e^{\frac {c_1}{6}}}{\sqrt [3]{4 x+e^{c_1}}}\\ y(x)&\to \frac {\sqrt [3]{2} e^{\frac {c_1}{6}}}{\sqrt [3]{4 x+e^{c_1}}}\\ y(x)&\to -\frac {(-1)^{2/3} \sqrt [3]{2} e^{\frac {c_1}{6}}}{\sqrt [3]{4 x+e^{c_1}}}\\ y(x)&\to \frac {(-1)^{2/3} \sqrt [3]{2} e^{\frac {c_1}{6}}}{\sqrt [3]{4 x+e^{c_1}}}\\ y(x)&\to 0\\ y(x)&\to -\frac {\sqrt [3]{-\frac {1}{2}}}{\sqrt [6]{x}}\\ y(x)&\to \frac {\sqrt [3]{-\frac {1}{2}}}{\sqrt [6]{x}}\\ y(x)&\to -\frac {1}{\sqrt [3]{2} \sqrt [6]{x}}\\ y(x)&\to \frac {1}{\sqrt [3]{2} \sqrt [6]{x}}\\ y(x)&\to -\frac {(-1)^{2/3}}{\sqrt [3]{2} \sqrt [6]{x}}\\ y(x)&\to \frac {(-1)^{2/3}}{\sqrt [3]{2} \sqrt [6]{x}} \end{align*}
Sympy. Time used: 0.818 (sec). Leaf size: 99
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(9*x*Derivative(y(x), x)**2 + y(x)**8 + 3*y(x)*Derivative(y(x), x),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
\[ \left [ \begin {cases} 2 \operatorname {acosh}{\left (\frac {1}{2 \sqrt {x} y^{3}{\left (x \right )}} \right )} & \text {for}\: \frac {1}{\left |{x y^{6}{\left (x \right )}}\right |} > 4 \\- 2 i \operatorname {asin}{\left (\frac {1}{2 \sqrt {x} y^{3}{\left (x \right )}} \right )} & \text {otherwise} \end {cases} = C_{1} + \log {\left (x \right )}, \ \begin {cases} - 2 \operatorname {acosh}{\left (\frac {1}{2 \sqrt {x} y^{3}{\left (x \right )}} \right )} & \text {for}\: \frac {1}{\left |{x y^{6}{\left (x \right )}}\right |} > 4 \\2 i \operatorname {asin}{\left (\frac {1}{2 \sqrt {x} y^{3}{\left (x \right )}} \right )} & \text {otherwise} \end {cases} = C_{1} + \log {\left (x \right )}\right ] \]