Internal
problem
ID
[24948]
Book
:
A
short
course
in
Differential
Equations.
Earl
D.
Rainville.
Second
edition.
1958.
Macmillan
Publisher,
NY.
CAT
58-5010
Section
:
Chapter
16.
Equations
of
order
one
and
higher
degree.
Exercises
at
page
246
Problem
number
:
3
Date
solved
:
Thursday, October 02, 2025 at 11:36:28 PM
CAS
classification
:
[[_homogeneous, `class G`]]
ode:=diff(y(x),x)^2+x*y(x)^2*diff(y(x),x)+y(x)^3 = 0; dsolve(ode,y(x), singsol=all);
ode=D[y[x],x]^2+x*y[x]^2*D[y[x],x]+y[x]^3==0; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(x*y(x)**2*Derivative(y(x), x) + y(x)**3 + Derivative(y(x), x)**2,0) ics = {} dsolve(ode,func=y(x),ics=ics)
NotImplementedError : The given ODE x*y(x)**2/2 - sqrt((x**2*y(x) - 4)*y(x)**3)/2 + Derivative(y(x),