89.31.5 problem 5

Internal problem ID [24950]
Book : A short course in Differential Equations. Earl D. Rainville. Second edition. 1958. Macmillan Publisher, NY. CAT 58-5010
Section : Chapter 16. Equations of order one and higher degree. Exercises at page 246
Problem number : 5
Date solved : Thursday, October 02, 2025 at 11:36:30 PM
CAS classification : [[_homogeneous, `class A`], _rational, _dAlembert]

\begin{align*} 4 y {y^{\prime }}^{2}-2 x y^{\prime }+y&=0 \end{align*}
Maple. Time used: 0.102 (sec). Leaf size: 73
ode:=4*y(x)*diff(y(x),x)^2-2*x*diff(y(x),x)+y(x) = 0; 
dsolve(ode,y(x), singsol=all);
 
\begin{align*} y &= -\frac {x}{2} \\ y &= \frac {x}{2} \\ y &= 0 \\ y &= \sqrt {c_1 \left (-i x +c_1 \right )} \\ y &= \sqrt {c_1 \left (i x +c_1 \right )} \\ y &= -\sqrt {c_1 \left (-i x +c_1 \right )} \\ y &= -\sqrt {c_1 \left (i x +c_1 \right )} \\ \end{align*}
Mathematica. Time used: 0.564 (sec). Leaf size: 84
ode=4*y[x]*D[y[x],x]^2-2*x*D[y[x],x]+y[x]==0; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} y(x)&\to -\frac {1}{2} \sqrt {2 e^{4 c_1} x-e^{8 c_1}}\\ y(x)&\to \frac {1}{2} \sqrt {2 e^{4 c_1} x-e^{8 c_1}}\\ y(x)&\to 0\\ y(x)&\to -\frac {x}{2}\\ y(x)&\to \frac {x}{2} \end{align*}
Sympy. Time used: 149.896 (sec). Leaf size: 469
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(-2*x*Derivative(y(x), x) + 4*y(x)*Derivative(y(x), x)**2 + y(x),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
\[ \left [ y{\left (x \right )} = - \frac {\sqrt {2} \sqrt {C_{1} - 2 \sqrt {2} x \sqrt {- C_{1}}}}{4}, \ y{\left (x \right )} = \frac {\sqrt {2} \sqrt {C_{1} - 2 \sqrt {2} x \sqrt {- C_{1}}}}{4}, \ y{\left (x \right )} = - \frac {\sqrt {2} \sqrt {C_{1} + 2 \sqrt {2} x \sqrt {- C_{1}}}}{4}, \ y{\left (x \right )} = \frac {\sqrt {2} \sqrt {C_{1} + 2 \sqrt {2} x \sqrt {- C_{1}}}}{4}, \ y{\left (x \right )} = - \frac {\sqrt {2} \sqrt {- 2 \sqrt {2} \sqrt {C_{1}} x - C_{1}}}{4}, \ y{\left (x \right )} = \frac {\sqrt {2} \sqrt {- 2 \sqrt {2} \sqrt {C_{1}} x - C_{1}}}{4}, \ y{\left (x \right )} = - \frac {\sqrt {2} \sqrt {2 \sqrt {2} \sqrt {C_{1}} x - C_{1}}}{4}, \ y{\left (x \right )} = \frac {\sqrt {2} \sqrt {2 \sqrt {2} \sqrt {C_{1}} x - C_{1}}}{4}, \ y{\left (x \right )} = - \frac {\sqrt {2} \sqrt {C_{1} - 2 \sqrt {2} x \sqrt {- C_{1}}}}{4}, \ y{\left (x \right )} = \frac {\sqrt {2} \sqrt {C_{1} - 2 \sqrt {2} x \sqrt {- C_{1}}}}{4}, \ y{\left (x \right )} = - \frac {\sqrt {2} \sqrt {C_{1} + 2 \sqrt {2} x \sqrt {- C_{1}}}}{4}, \ y{\left (x \right )} = \frac {\sqrt {2} \sqrt {C_{1} + 2 \sqrt {2} x \sqrt {- C_{1}}}}{4}, \ y{\left (x \right )} = - \frac {\sqrt {2} \sqrt {- 2 \sqrt {2} \sqrt {C_{1}} x - C_{1}}}{4}, \ y{\left (x \right )} = \frac {\sqrt {2} \sqrt {- 2 \sqrt {2} \sqrt {C_{1}} x - C_{1}}}{4}, \ y{\left (x \right )} = - \frac {\sqrt {2} \sqrt {2 \sqrt {2} \sqrt {C_{1}} x - C_{1}}}{4}, \ y{\left (x \right )} = \frac {\sqrt {2} \sqrt {2 \sqrt {2} \sqrt {C_{1}} x - C_{1}}}{4}\right ] \]