Internal
problem
ID
[24951]
Book
:
A
short
course
in
Differential
Equations.
Earl
D.
Rainville.
Second
edition.
1958.
Macmillan
Publisher,
NY.
CAT
58-5010
Section
:
Chapter
16.
Equations
of
order
one
and
higher
degree.
Exercises
at
page
246
Problem
number
:
6
Date
solved
:
Thursday, October 02, 2025 at 11:36:30 PM
CAS
classification
:
[[_1st_order, _with_linear_symmetries]]
ode:=9*diff(y(x),x)^2+12*x*y(x)^4*diff(y(x),x)+4*y(x)^5 = 0; dsolve(ode,y(x), singsol=all);
ode=9*D[y[x],x]^2+12*x*y[x]^4*D[y[x],x]+4*y[x]^5==0; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(12*x*y(x)**4*Derivative(y(x), x) + 4*y(x)**5 + 9*Derivative(y(x), x)**2,0) ics = {} dsolve(ode,func=y(x),ics=ics)
NotImplementedError : The given ODE 2*x*y(x)**4/3 - 2*sqrt((x**2*y(x)**3 - 1)*y(x)**5)/3 + Derivativ