89.31.8 problem 8

Internal problem ID [24953]
Book : A short course in Differential Equations. Earl D. Rainville. Second edition. 1958. Macmillan Publisher, NY. CAT 58-5010
Section : Chapter 16. Equations of order one and higher degree. Exercises at page 246
Problem number : 8
Date solved : Thursday, October 02, 2025 at 11:36:32 PM
CAS classification : [[_homogeneous, `class G`]]

\begin{align*} {y^{\prime }}^{2}+2 x y^{3} y^{\prime }+y^{4}&=0 \end{align*}
Maple. Time used: 0.197 (sec). Leaf size: 48
ode:=diff(y(x),x)^2+2*x*y(x)^3*diff(y(x),x)+y(x)^4 = 0; 
dsolve(ode,y(x), singsol=all);
 
\begin{align*} y &= -\frac {1}{x} \\ y &= \frac {1}{x} \\ y &= 0 \\ y &= \frac {1}{\sqrt {-c_1 \left (c_1 -2 x \right )}} \\ y &= -\frac {1}{\sqrt {c_1 \left (-c_1 +2 x \right )}} \\ \end{align*}
Mathematica. Time used: 0.398 (sec). Leaf size: 171
ode=D[y[x],x]^2+2*x*y[x]^3*D[y[x],x]+y[x]^4==0; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} \text {Solve}\left [-\frac {\sqrt {1-x^2 y(x)^2} y(x)^3 \text {arcsinh}\left (x \sqrt {-y(x)^2}\right )}{\sqrt {-y(x)^2} \sqrt {y(x)^4 \left (x^2 y(x)^2-1\right )}}-\log (y(x))=c_1,y(x)\right ]\\ \text {Solve}\left [\frac {y(x)^3 \sqrt {1-x^2 y(x)^2} \text {arcsinh}\left (x \sqrt {-y(x)^2}\right )}{\sqrt {-y(x)^2} \sqrt {y(x)^4 \left (x^2 y(x)^2-1\right )}}-\log (y(x))=c_1,y(x)\right ]\\ y(x)&\to 0\\ y(x)&\to -\frac {1}{x}\\ y(x)&\to \frac {1}{x} \end{align*}
Sympy. Time used: 73.329 (sec). Leaf size: 218
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(2*x*y(x)**3*Derivative(y(x), x) + y(x)**4 + Derivative(y(x), x)**2,0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
\[ \left [ y{\left (x \right )} = \begin {cases} - \frac {1}{\sqrt {2 x e^{- C_{1}} - e^{- 2 C_{1}}}} & \text {for}\: \frac {x}{\sqrt {2 x e^{- C_{1}} - e^{- 2 C_{1}}}} > -1 \wedge \frac {x}{\sqrt {2 x e^{- C_{1}} - e^{- 2 C_{1}}}} < 1 \\\text {NaN} & \text {otherwise} \end {cases}, \ y{\left (x \right )} = \begin {cases} \frac {1}{\sqrt {2 x e^{- C_{1}} - e^{- 2 C_{1}}}} & \text {for}\: \frac {x}{\sqrt {2 x e^{- C_{1}} - e^{- 2 C_{1}}}} > -1 \wedge \frac {x}{\sqrt {2 x e^{- C_{1}} - e^{- 2 C_{1}}}} < 1 \\\text {NaN} & \text {otherwise} \end {cases}, \ y{\left (x \right )} = \begin {cases} - C_{1} \sqrt {\frac {1}{2 C_{1} x - 1}} & \text {for}\: C_{1} x \sqrt {\frac {1}{2 C_{1} x - 1}} > -1 \wedge C_{1} x \sqrt {\frac {1}{2 C_{1} x - 1}} < 1 \\\text {NaN} & \text {otherwise} \end {cases}, \ y{\left (x \right )} = \begin {cases} C_{1} \sqrt {\frac {1}{2 C_{1} x - 1}} & \text {for}\: C_{1} x \sqrt {\frac {1}{2 C_{1} x - 1}} > -1 \wedge C_{1} x \sqrt {\frac {1}{2 C_{1} x - 1}} < 1 \\\text {NaN} & \text {otherwise} \end {cases}\right ] \]