89.31.9 problem 9

Internal problem ID [24954]
Book : A short course in Differential Equations. Earl D. Rainville. Second edition. 1958. Macmillan Publisher, NY. CAT 58-5010
Section : Chapter 16. Equations of order one and higher degree. Exercises at page 246
Problem number : 9
Date solved : Thursday, October 02, 2025 at 11:36:33 PM
CAS classification : [[_1st_order, _with_linear_symmetries], _rational]

\begin{align*} 9 y^{2} {y^{\prime }}^{2}-3 x y^{\prime }+y&=0 \end{align*}
Maple. Time used: 0.136 (sec). Leaf size: 114
ode:=9*y(x)^2*diff(y(x),x)^2-3*x*diff(y(x),x)+y(x) = 0; 
dsolve(ode,y(x), singsol=all);
 
\begin{align*} y &= \frac {2^{{1}/{3}} \left (x^{2}\right )^{{1}/{3}}}{2} \\ y &= -\frac {2^{{1}/{3}} \left (x^{2}\right )^{{1}/{3}} \left (1+i \sqrt {3}\right )}{4} \\ y &= \frac {2^{{1}/{3}} \left (x^{2}\right )^{{1}/{3}} \left (-1+i \sqrt {3}\right )}{4} \\ y &= 0 \\ y &= \operatorname {RootOf}\left (-2 \ln \left (x \right )+3 \int _{}^{\textit {\_Z}}-\frac {4 \textit {\_a}^{3}-\sqrt {-4 \textit {\_a}^{3}+1}-1}{\textit {\_a} \left (4 \textit {\_a}^{3}-1\right )}d \textit {\_a} +2 c_1 \right ) x^{{2}/{3}} \\ \end{align*}
Mathematica. Time used: 0.843 (sec). Leaf size: 418
ode=9*y[x]^2*D[y[x],x]^2-3*x*D[y[x],x]+y[x]==0; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} y(x)&\to -\sqrt [3]{-2} \sqrt [3]{e^{c_1} \left (x-2 e^{c_1}\right )}\\ y(x)&\to \sqrt [3]{2} \sqrt [3]{e^{c_1} \left (x-2 e^{c_1}\right )}\\ y(x)&\to (-1)^{2/3} \sqrt [3]{2} \sqrt [3]{e^{c_1} \left (x-2 e^{c_1}\right )}\\ y(x)&\to \left (\cosh \left (\frac {c_1}{3}\right )+\sinh \left (\frac {c_1}{3}\right )\right ) \sqrt [3]{-i x+\cosh (c_1)+\sinh (c_1)}\\ y(x)&\to \frac {1}{2} i \left (\sqrt {3}+i\right ) \left (\cosh \left (\frac {c_1}{3}\right )+\sinh \left (\frac {c_1}{3}\right )\right ) \sqrt [3]{-i x+\cosh (c_1)+\sinh (c_1)}\\ y(x)&\to -\frac {1}{2} i \left (\sqrt {3}-i\right ) \left (\cosh \left (\frac {c_1}{3}\right )+\sinh \left (\frac {c_1}{3}\right )\right ) \sqrt [3]{-i x+\cosh (c_1)+\sinh (c_1)}\\ y(x)&\to \left (\cosh \left (\frac {c_1}{3}\right )+\sinh \left (\frac {c_1}{3}\right )\right ) \sqrt [3]{i x+\cosh (c_1)+\sinh (c_1)}\\ y(x)&\to \frac {1}{2} i \left (\sqrt {3}+i\right ) \left (\cosh \left (\frac {c_1}{3}\right )+\sinh \left (\frac {c_1}{3}\right )\right ) \sqrt [3]{i x+\cosh (c_1)+\sinh (c_1)}\\ y(x)&\to -\frac {1}{2} i \left (\sqrt {3}-i\right ) \left (\cosh \left (\frac {c_1}{3}\right )+\sinh \left (\frac {c_1}{3}\right )\right ) \sqrt [3]{i x+\cosh (c_1)+\sinh (c_1)}\\ y(x)&\to 0\\ y(x)&\to \left (-\frac {1}{2}\right )^{2/3} x^{2/3}\\ y(x)&\to \frac {x^{2/3}}{2^{2/3}}\\ y(x)&\to -\frac {\sqrt [3]{-1} x^{2/3}}{2^{2/3}} \end{align*}
Sympy
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(-3*x*Derivative(y(x), x) + 9*y(x)**2*Derivative(y(x), x)**2 + y(x),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
NotImplementedError : The given ODE -(x + sqrt(x**2 - 4*y(x)**3))/(6*y(x)**2) + Derivative(y(x), x)