Internal
problem
ID
[25125]
Book
:
Ordinary
Differential
Equations.
By
William
Adkins
and
Mark
G
Davidson.
Springer.
NY.
2010.
ISBN
978-1-4614-3617-1
Section
:
Chapter
1.
First
order
differential
equations.
Exercises
at
page
71
Problem
number
:
6
Date
solved
:
Thursday, October 02, 2025 at 11:52:41 PM
CAS
classification
:
[[_homogeneous, `class A`], _rational, _Bernoulli]
With initial conditions
ode:=diff(y(t),t) = (t^2+y(t)^2)/t/y(t); ic:=[y(exp(1)) = 2*exp(1)]; dsolve([ode,op(ic)],y(t), singsol=all);
ode=D[y[t],{t,1}] == (t^2+y[t]^2)/(t*y[t]); ic={y[Exp[1]]==Exp[1]}; DSolve[{ode,ic},y[t],t,IncludeSingularSolutions->True]
from sympy import * t = symbols("t") y = Function("y") ode = Eq(Derivative(y(t), t) - (t**2 + y(t)**2)/(t*y(t)),0) ics = {y(E): E} dsolve(ode,func=y(t),ics=ics)