Internal
problem
ID
[25126]
Book
:
Ordinary
Differential
Equations.
By
William
Adkins
and
Mark
G
Davidson.
Springer.
NY.
2010.
ISBN
978-1-4614-3617-1
Section
:
Chapter
1.
First
order
differential
equations.
Exercises
at
page
71
Problem
number
:
7
Date
solved
:
Thursday, October 02, 2025 at 11:52:46 PM
CAS
classification
:
[[_homogeneous, `class A`], _rational, _dAlembert]
ode:=t*diff(y(t),t) = y(t)+(t^2-y(t)^2)^(1/2); dsolve(ode,y(t), singsol=all);
ode=D[y[t],{t,1}] == y[t]+Sqrt[t^2-y[t]^2]; ic={}; DSolve[{ode,ic},y[t],t,IncludeSingularSolutions->True]
Not solved
from sympy import * t = symbols("t") y = Function("y") ode = Eq(-sqrt(t**2 - y(t)**2) - y(t) + Derivative(y(t), t),0) ics = {} dsolve(ode,func=y(t),ics=ics)
NotImplementedError : The given ODE -sqrt(t**2 - y(t)**2) - y(t) + Derivative(y(t), t) cannot be sol