90.23.8 problem 12

Internal problem ID [25361]
Book : Ordinary Differential Equations. By William Adkins and Mark G Davidson. Springer. NY. 2010. ISBN 978-1-4614-3617-1
Section : Chapter 5. Second Order Linear Differential Equations. Exercises at page 365
Problem number : 12
Date solved : Friday, October 03, 2025 at 12:00:37 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

\begin{align*} -t y^{\prime \prime }-2 y^{\prime }+y t&=0 \end{align*}

Using Laplace method

Maple. Time used: 0.044 (sec). Leaf size: 37
ode:=-t*diff(diff(y(t),t),t)-2*diff(y(t),t)+t*y(t) = 0; 
dsolve(ode,y(t),method='laplace');
 
\[ y = -\frac {y \left (0\right ) \delta \left (t \right ) \operatorname {Typesetting}\mcoloneq \operatorname {msup}\left (\operatorname {Typesetting}\mcoloneq \operatorname {mi}\left (\text {``$\mathcal \{L\}$''}\right ), \operatorname {Typesetting}\mcoloneq \operatorname {mrow}\left (\operatorname {Typesetting}\mcoloneq \operatorname {mo}\left (\text {``$-$''}\right ), \operatorname {Typesetting}\mcoloneq \operatorname {mn}\left (``1''\right )\right ), \operatorname {Typesetting}\mcoloneq \operatorname {msemantics}=\text {``atomic''}\right )\left (\operatorname {arctanh}\left (\textit {\_s1} \right ), \textit {\_s1} , 0\right )}{\delta \left (0\right )}+y \left (0\right ) \operatorname {Typesetting}\mcoloneq \operatorname {msup}\left (\operatorname {Typesetting}\mcoloneq \operatorname {mi}\left (\text {``$\mathcal \{L\}$''}\right ), \operatorname {Typesetting}\mcoloneq \operatorname {mrow}\left (\operatorname {Typesetting}\mcoloneq \operatorname {mo}\left (\text {``$-$''}\right ), \operatorname {Typesetting}\mcoloneq \operatorname {mn}\left (``1''\right )\right ), \operatorname {Typesetting}\mcoloneq \operatorname {msemantics}=\text {``atomic''}\right )\left (\operatorname {arctanh}\left (\textit {\_s1} \right ), \textit {\_s1} , t\right )+\frac {y \left (0\right ) \delta \left (t \right )}{\delta \left (0\right )} \]
Mathematica. Time used: 0.018 (sec). Leaf size: 28
ode=-t*D[y[t],{t,2}]-2*D[y[t],t]+t*y[t]==0; 
ic={}; 
DSolve[{ode,ic},y[t],t,IncludeSingularSolutions->True]
 
\begin{align*} y(t)&\to \frac {2 c_1 e^{-t}+c_2 e^t}{2 t} \end{align*}
Sympy. Time used: 0.129 (sec). Leaf size: 24
from sympy import * 
t = symbols("t") 
y = Function("y") 
ode = Eq(t*y(t) - t*Derivative(y(t), (t, 2)) - 2*Derivative(y(t), t),0) 
ics = {} 
dsolve(ode,func=y(t),ics=ics)
 
\[ y{\left (t \right )} = \frac {C_{1} J_{\frac {1}{2}}\left (i t\right ) + C_{2} Y_{\frac {1}{2}}\left (i t\right )}{\sqrt {t}} \]