90.23.9 problem 13

Internal problem ID [25362]
Book : Ordinary Differential Equations. By William Adkins and Mark G Davidson. Springer. NY. 2010. ISBN 978-1-4614-3617-1
Section : Chapter 5. Second Order Linear Differential Equations. Exercises at page 365
Problem number : 13
Date solved : Friday, October 03, 2025 at 12:00:37 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

\begin{align*} t y^{\prime \prime }+\left (2-5 t \right ) y^{\prime }+\left (6 t -5\right ) y&=0 \end{align*}

Using Laplace method

Maple. Time used: 0.043 (sec). Leaf size: 26
ode:=t*diff(diff(y(t),t),t)+(2-5*t)*diff(y(t),t)+(6*t-5)*y(t) = 0; 
dsolve(ode,y(t),method='laplace');
 
\[ y = c_1 \delta \left (t \right )+\frac {y \left (0\right ) \left ({\mathrm e}^{3 t}-{\mathrm e}^{2 t}\right )}{t} \]
Mathematica. Time used: 0.016 (sec). Leaf size: 23
ode=t*D[y[t],{t,2}]+(2-5*t)*D[y[t],t]+(6*t-5)*y[t]==0; 
ic={}; 
DSolve[{ode,ic},y[t],t,IncludeSingularSolutions->True]
 
\begin{align*} y(t)&\to \frac {e^{2 t} \left (c_2 e^t+c_1\right )}{t} \end{align*}
Sympy
from sympy import * 
t = symbols("t") 
y = Function("y") 
ode = Eq(t*Derivative(y(t), (t, 2)) + (2 - 5*t)*Derivative(y(t), t) + (6*t - 5)*y(t),0) 
ics = {} 
dsolve(ode,func=y(t),ics=ics)
 
False