Internal
problem
ID
[25404]
Book
:
Ordinary
Differential
Equations.
By
William
Adkins
and
Mark
G
Davidson.
Springer.
NY.
2010.
ISBN
978-1-4614-3617-1
Section
:
Chapter
6.
Discontinuous
Functions
and
the
Laplace
Transform.
Exercises
at
page
379
Problem
number
:
25
Date
solved
:
Friday, October 03, 2025 at 12:01:11 AM
CAS
classification
:
[[_linear, `class A`]]
Using Laplace method With initial conditions
ode:=diff(y(t),t)-y(t) = piecewise(0 <= t and t < 2,1,2 <= t and t < 4,-1,4 <= t and t < infinity,0); ic:=[y(0) = 0]; dsolve([ode,op(ic)],y(t),method='laplace');
ode=D[y[t],{t,1}]-y[t]==Piecewise[{{1,0<=t<2},{-1,2<=t<4}}]; ic={y[0]==0}; DSolve[{ode,ic},y[t],t,IncludeSingularSolutions->True]
from sympy import * t = symbols("t") y = Function("y") ode = Eq(-Piecewise((1, (t >= 0) & (t < 2)), (-2, (t >= 2) & (t < 4)), (0, (t >= 4) & (t < oo))) - y(t) + Derivative(y(t), t),0) ics = {y(0): 0} dsolve(ode,func=y(t),ics=ics)