Internal
problem
ID
[25405]
Book
:
Ordinary
Differential
Equations.
By
William
Adkins
and
Mark
G
Davidson.
Springer.
NY.
2010.
ISBN
978-1-4614-3617-1
Section
:
Chapter
6.
Discontinuous
Functions
and
the
Laplace
Transform.
Exercises
at
page
379
Problem
number
:
26
Date
solved
:
Friday, October 03, 2025 at 12:01:12 AM
CAS
classification
:
[[_linear, `class A`]]
Using Laplace method With initial conditions
ode:=diff(y(t),t)+3*y(t) = piecewise(0 <= t and t < 1,t,1 <= t and t < infinity,1); ic:=[y(0) = 0]; dsolve([ode,op(ic)],y(t),method='laplace');
ode=D[y[t],{t,1}]+3*y[t]==Piecewise[{{t,0<=t<1},{1,1<=t<Infinity}}]; ic={y[0]==0}; DSolve[{ode,ic},y[t],t,IncludeSingularSolutions->True]
from sympy import * t = symbols("t") y = Function("y") ode = Eq(-Piecewise((t, (t >= 0) & (t < 1)), (1, (t >= 1) & (t < oo))) + 3*y(t) + Derivative(y(t), t),0) ics = {y(0): 0} dsolve(ode,func=y(t),ics=ics)