Internal
problem
ID
[25407]
Book
:
Ordinary
Differential
Equations.
By
William
Adkins
and
Mark
G
Davidson.
Springer.
NY.
2010.
ISBN
978-1-4614-3617-1
Section
:
Chapter
6.
Discontinuous
Functions
and
the
Laplace
Transform.
Exercises
at
page
379
Problem
number
:
28
Date
solved
:
Friday, October 03, 2025 at 12:01:13 AM
CAS
classification
:
[[_linear, `class A`]]
Using Laplace method With initial conditions
ode:=diff(y(t),t)+y(t) = piecewise(0 <= t and t < Pi,sin(t),Pi <= t and t < infinity,0); ic:=[y(Pi) = -1]; dsolve([ode,op(ic)],y(t),method='laplace');
ode=D[y[t],{t,1}]+y[t]==Piecewise[{ {Sin[t],0<=t<Pi}, {0,Pi<=t<Infinity}}]; ic={y[Pi]==-1}; DSolve[{ode,ic},y[t],t,IncludeSingularSolutions->True]
from sympy import * t = symbols("t") y = Function("y") ode = Eq(-Piecewise((sin(t), (t >= 0) & (t < pi)), (0, (t >= pi) & (t < oo))) + y(t) + Derivative(y(t), t),0) ics = {y(pi): -1} dsolve(ode,func=y(t),ics=ics)