Internal
problem
ID
[25406]
Book
:
Ordinary
Differential
Equations.
By
William
Adkins
and
Mark
G
Davidson.
Springer.
NY.
2010.
ISBN
978-1-4614-3617-1
Section
:
Chapter
6.
Discontinuous
Functions
and
the
Laplace
Transform.
Exercises
at
page
379
Problem
number
:
27
Date
solved
:
Friday, October 03, 2025 at 12:01:12 AM
CAS
classification
:
[[_linear, `class A`]]
Using Laplace method With initial conditions
ode:=diff(y(t),t)-y(t) = piecewise(0 <= t and t < 1,0,1 <= t and t < 2,t-1,2 <= t and t < 3,3-t,3 <= t and t < infinity,0); ic:=[y(0) = 0]; dsolve([ode,op(ic)],y(t),method='laplace');
ode=D[y[t],{t,1}]-y[t]==Piecewise[{ {1,0<=t<1}, {t-1,1<=t<2},{3-t,2<=t<3}, {0,3<=t<Infinity}}]; ic={y[0]==0}; DSolve[{ode,ic},y[t],t,IncludeSingularSolutions->True]
from sympy import * t = symbols("t") y = Function("y") ode = Eq(-Piecewise((0, (t >= 0) & (t < 1)), (t - 1, (t >= 1) & (t < 2)), (3 - t, (t >= 2) & (t < 3)), (0, (t >= 3) & (t < oo))) + 3*y(t) + Derivative(y(t), t),0) ics = {y(0): 0} dsolve(ode,func=y(t),ics=ics)