90.30.5 problem 5

Internal problem ID [25445]
Book : Ordinary Differential Equations. By William Adkins and Mark G Davidson. Springer. NY. 2010. ISBN 978-1-4614-3617-1
Section : Chapter 7. Power series methods. Exercises at page 517
Problem number : 5
Date solved : Friday, October 03, 2025 at 12:01:35 AM
CAS classification : [[_2nd_order, _exact, _linear, _homogeneous]]

\begin{align*} \left (-t^{2}+1\right ) y^{\prime \prime }+2 y&=0 \end{align*}

Using series method with expansion around

\begin{align*} 0 \end{align*}
Maple. Time used: 0.003 (sec). Leaf size: 34
Order:=6; 
ode:=(-t^2+1)*diff(diff(y(t),t),t)+2*y(t) = 0; 
dsolve(ode,y(t),type='series',t=0);
 
\[ y = \left (-t^{2}+1\right ) y \left (0\right )+\left (t -\frac {1}{3} t^{3}-\frac {1}{15} t^{5}\right ) y^{\prime }\left (0\right )+O\left (t^{6}\right ) \]
Mathematica. Time used: 0.001 (sec). Leaf size: 33
ode=(1-t^2)*D[y[t],{t,2}]+2*y[t]==0; 
ic={}; 
AsymptoticDSolveValue[{ode,ic},y[t],{t,0,5}]
 
\[ y(t)\to c_1 \left (1-t^2\right )+c_2 \left (-\frac {t^5}{15}-\frac {t^3}{3}+t\right ) \]
Sympy. Time used: 0.228 (sec). Leaf size: 22
from sympy import * 
t = symbols("t") 
y = Function("y") 
ode = Eq((1 - t**2)*Derivative(y(t), (t, 2)) + 2*y(t),0) 
ics = {} 
dsolve(ode,func=y(t),ics=ics,hint="2nd_power_series_ordinary",x0=0,n=6)
 
\[ y{\left (t \right )} = C_{2} \left (1 - t^{2}\right ) + C_{1} t \left (1 - \frac {t^{2}}{3}\right ) + O\left (t^{6}\right ) \]