90.30.6 problem 6

Internal problem ID [25446]
Book : Ordinary Differential Equations. By William Adkins and Mark G Davidson. Springer. NY. 2010. ISBN 978-1-4614-3617-1
Section : Chapter 7. Power series methods. Exercises at page 517
Problem number : 6
Date solved : Friday, October 03, 2025 at 12:01:36 AM
CAS classification : [_Gegenbauer]

\begin{align*} \left (-t^{2}+1\right ) y^{\prime \prime }-2 t y^{\prime }+2 y&=0 \end{align*}

Using series method with expansion around

\begin{align*} 0 \end{align*}
Maple. Time used: 0.003 (sec). Leaf size: 28
Order:=6; 
ode:=(-t^2+1)*diff(diff(y(t),t),t)-2*t*diff(y(t),t)+2*y(t) = 0; 
dsolve(ode,y(t),type='series',t=0);
 
\[ y = \left (1-t^{2}-\frac {1}{3} t^{4}\right ) y \left (0\right )+t y^{\prime }\left (0\right )+O\left (t^{6}\right ) \]
Mathematica. Time used: 0.001 (sec). Leaf size: 25
ode=(1-t^2)*D[y[t],{t,2}]-2*t*D[y[t],t]+2*y[t]==0; 
ic={}; 
AsymptoticDSolveValue[{ode,ic},y[t],{t,0,5}]
 
\[ y(t)\to c_1 \left (-\frac {t^4}{3}-t^2+1\right )+c_2 t \]
Sympy. Time used: 0.254 (sec). Leaf size: 20
from sympy import * 
t = symbols("t") 
y = Function("y") 
ode = Eq(-2*t*Derivative(y(t), t) + (1 - t**2)*Derivative(y(t), (t, 2)) + 2*y(t),0) 
ics = {} 
dsolve(ode,func=y(t),ics=ics,hint="2nd_power_series_ordinary",x0=0,n=6)
 
\[ y{\left (t \right )} = C_{2} \left (- \frac {t^{4}}{3} - t^{2} + 1\right ) + C_{1} t + O\left (t^{6}\right ) \]