6.9.19 problem 19

Internal problem ID [1775]
Book : Elementary differential equations with boundary value problems. William F. Trench. Brooks/Cole 2001
Section : Chapter 5 linear second order equations. Section 5.6 Reduction or order. Page 253
Problem number : 19
Date solved : Tuesday, September 30, 2025 at 05:19:14 AM
CAS classification : [[_Emden, _Fowler], [_2nd_order, _linear, `_with_symmetry_[0,F(x)]`]]

\begin{align*} x^{2} y^{\prime \prime }-4 x y^{\prime }+6 y&=0 \end{align*}

Using reduction of order method given that one solution is

\begin{align*} y&=x^{2} \end{align*}
Maple. Time used: 0.004 (sec). Leaf size: 13
ode:=x^2*diff(diff(y(x),x),x)-4*x*diff(y(x),x)+6*y(x) = 0; 
dsolve(ode,y(x), singsol=all);
 
\[ y = x^{2} \left (c_1 x +c_2 \right ) \]
Mathematica. Time used: 0.007 (sec). Leaf size: 16
ode=x^2*D[y[x],{x,2}]-4*x*D[y[x],x]+6*y[x]==0; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} y(x)&\to x^2 (c_2 x+c_1) \end{align*}
Sympy. Time used: 0.096 (sec). Leaf size: 10
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(x**2*Derivative(y(x), (x, 2)) - 4*x*Derivative(y(x), x) + 6*y(x),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
\[ y{\left (x \right )} = x^{2} \left (C_{1} + C_{2} x\right ) \]