Internal
problem
ID
[1776]
Book
:
Elementary
differential
equations
with
boundary
value
problems.
William
F.
Trench.
Brooks/Cole
2001
Section
:
Chapter
5
linear
second
order
equations.
Section
5.6
Reduction
or
order.
Page
253
Problem
number
:
20
Date
solved
:
Tuesday, September 30, 2025 at 05:19:15 AM
CAS
classification
:
[[_2nd_order, _with_linear_symmetries]]
Using reduction of order method given that one solution is
ode:=x^2*ln(x)^2*diff(diff(y(x),x),x)-2*x*ln(x)*diff(y(x),x)+(2+ln(x))*y(x) = 0; dsolve(ode,y(x), singsol=all);
ode=x^2*Log[x]^2*D[y[x],{x,2}]-2*x*Log[x]*D[y[x],x]+(2+Log[x])*y[x]==0; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(x**2*log(x)**2*Derivative(y(x), (x, 2)) - 2*x*log(x)*Derivative(y(x), x) + (log(x) + 2)*y(x),0) ics = {} dsolve(ode,func=y(x),ics=ics)
NotImplementedError : The given ODE -x*log(x)*Derivative(y(x), (x, 2))/2 + Derivative(y(x), x) - y(x)/(2*x) - y(x)/(x*log(x)) cannot be solved by the factorable group method