6.9.25 problem 25

Internal problem ID [1781]
Book : Elementary differential equations with boundary value problems. William F. Trench. Brooks/Cole 2001
Section : Chapter 5 linear second order equations. Section 5.6 Reduction or order. Page 253
Problem number : 25
Date solved : Tuesday, September 30, 2025 at 05:19:17 AM
CAS classification : [[_2nd_order, _with_linear_symmetries]]

\begin{align*} x y^{\prime \prime }-\left (4 x +1\right ) y^{\prime }+\left (4 x +2\right ) y&=0 \end{align*}

Using reduction of order method given that one solution is

\begin{align*} y&={\mathrm e}^{2 x} \end{align*}
Maple. Time used: 0.003 (sec). Leaf size: 16
ode:=x*diff(diff(y(x),x),x)-(1+4*x)*diff(y(x),x)+(4*x+2)*y(x) = 0; 
dsolve(ode,y(x), singsol=all);
 
\[ y = {\mathrm e}^{2 x} \left (c_2 \,x^{2}+c_1 \right ) \]
Mathematica. Time used: 0.016 (sec). Leaf size: 25
ode=x*D[y[x],{x,2}]-(4*x+1)*D[y[x],x]+(4*x+2)*y[x]==0; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} y(x)&\to \frac {1}{2} e^{2 x} \left (c_2 x^2+2 c_1\right ) \end{align*}
Sympy
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(x*Derivative(y(x), (x, 2)) - (4*x + 1)*Derivative(y(x), x) + (4*x + 2)*y(x),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
False