Internal
problem
ID
[1782]
Book
:
Elementary
differential
equations
with
boundary
value
problems.
William
F.
Trench.
Brooks/Cole
2001
Section
:
Chapter
5
linear
second
order
equations.
Section
5.6
Reduction
or
order.
Page
253
Problem
number
:
26
Date
solved
:
Tuesday, September 30, 2025 at 05:19:17 AM
CAS
classification
:
[[_2nd_order, _with_linear_symmetries]]
Using reduction of order method given that one solution is
ode:=4*x^2*sin(x)*diff(diff(y(x),x),x)-4*x*(x*cos(x)+sin(x))*diff(y(x),x)+(2*x*cos(x)+3*sin(x))*y(x) = 0; dsolve(ode,y(x), singsol=all);
ode=4*x^2*Sin[x]*D[y[x],{x,2}]-4*x*(x*Cos[x]+Sin[x])*D[y[x],x]+(2*x*Cos[x]+3*Sin[x])*y[x]==0; ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(4*x**2*sin(x)*Derivative(y(x), (x, 2)) - 4*x*(x*cos(x) + sin(x))*Derivative(y(x), x) + (2*x*cos(x) + 3*sin(x))*y(x),0) ics = {} dsolve(ode,func=y(x),ics=ics)
NotImplementedError : The given ODE Derivative(y(x), x) - (x**2*sin(x)*Derivative(y(x), (x, 2)) + x*y(x)*cos(x)/2 + 3*y(x)*sin(x)/4)/(x*(x*cos(x) + sin(x))) cannot be solved by the factorable group method