Internal
problem
ID
[2112]
Book
:
Elementary
differential
equations
with
boundary
value
problems.
William
F.
Trench.
Brooks/Cole
2001
Section
:
Chapter
9
Introduction
to
Linear
Higher
Order
Equations.
Section
9.1.
Page
471
Problem
number
:
section
9.1,
problem
5(b)
Date
solved
:
Tuesday, September 30, 2025 at 05:24:10 AM
CAS
classification
:
[[_3rd_order, _exact, _linear, _homogeneous]]
With initial conditions
ode:=x^3*diff(diff(diff(y(x),x),x),x)-x^2*diff(diff(y(x),x),x)-2*x*diff(y(x),x)+6*y(x) = 0; ic:=[y(1) = k__0, D(y)(1) = k__1, (D@@2)(y)(1) = k__2]; dsolve([ode,op(ic)],y(x), singsol=all);
ode=x^3*D[y[x],{x,3}]-x^2*D[y[x],{x,2}]-2*x*D[y[x],x]+6*y[x]==0; ic={y[1]==k0,Derivative[1][y][1]==k1,Derivative[2][y][1]==k2}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(x**3*Derivative(y(x), (x, 3)) - x**2*Derivative(y(x), (x, 2)) - 2*x*Derivative(y(x), x) + 6*y(x),0) ics = {y(1): k__0, Subs(Derivative(y(x), x), x, 1): k__1, Subs(Derivative(y(x), (x, 2)), x, 1): k__2} dsolve(ode,func=y(x),ics=ics)