6.17.7 problem section 9.1, problem 6(a)

Internal problem ID [2113]
Book : Elementary differential equations with boundary value problems. William F. Trench. Brooks/Cole 2001
Section : Chapter 9 Introduction to Linear Higher Order Equations. Section 9.1. Page 471
Problem number : section 9.1, problem 6(a)
Date solved : Tuesday, September 30, 2025 at 05:24:10 AM
CAS classification : [[_3rd_order, _missing_x]]

\begin{align*} y^{\prime \prime \prime }+y^{\prime \prime }-y^{\prime }-y&=0 \end{align*}
Maple. Time used: 0.002 (sec). Leaf size: 19
ode:=diff(diff(diff(y(x),x),x),x)+diff(diff(y(x),x),x)-diff(y(x),x)-y(x) = 0; 
dsolve(ode,y(x), singsol=all);
 
\[ y = c_1 \,{\mathrm e}^{x}+{\mathrm e}^{-x} \left (c_3 x +c_2 \right ) \]
Mathematica. Time used: 0.002 (sec). Leaf size: 26
ode=D[y[x],{x,3}]+D[y[x],{x,2}]-D[y[x],x]-y[x]==0; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} y(x)&\to e^{-x} \left (c_2 x+c_3 e^{2 x}+c_1\right ) \end{align*}
Sympy. Time used: 0.090 (sec). Leaf size: 15
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(-y(x) - Derivative(y(x), x) + Derivative(y(x), (x, 2)) + Derivative(y(x), (x, 3)),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
\[ y{\left (x \right )} = C_{3} e^{x} + \left (C_{1} + C_{2} x\right ) e^{- x} \]