6.17.8 problem section 9.1, problem 6(b)

Internal problem ID [2114]
Book : Elementary differential equations with boundary value problems. William F. Trench. Brooks/Cole 2001
Section : Chapter 9 Introduction to Linear Higher Order Equations. Section 9.1. Page 471
Problem number : section 9.1, problem 6(b)
Date solved : Tuesday, September 30, 2025 at 05:24:11 AM
CAS classification : [[_3rd_order, _missing_x]]

\begin{align*} y^{\prime \prime \prime }-3 y^{\prime \prime }+7 y^{\prime }-5 y&=0 \end{align*}
Maple. Time used: 0.002 (sec). Leaf size: 21
ode:=diff(diff(diff(y(x),x),x),x)-3*diff(diff(y(x),x),x)+7*diff(y(x),x)-5*y(x) = 0; 
dsolve(ode,y(x), singsol=all);
 
\[ y = {\mathrm e}^{x} \left (c_1 +c_2 \sin \left (2 x \right )+c_3 \cos \left (2 x \right )\right ) \]
Mathematica. Time used: 0.002 (sec). Leaf size: 26
ode=D[y[x],{x,3}]-3*D[y[x],{x,2}]+7*D[y[x],x]-5*y[x]==0; 
ic={}; 
DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
 
\begin{align*} y(x)&\to e^x (c_2 \cos (2 x)+c_1 \sin (2 x)+c_3) \end{align*}
Sympy. Time used: 0.095 (sec). Leaf size: 20
from sympy import * 
x = symbols("x") 
y = Function("y") 
ode = Eq(-5*y(x) + 7*Derivative(y(x), x) - 3*Derivative(y(x), (x, 2)) + Derivative(y(x), (x, 3)),0) 
ics = {} 
dsolve(ode,func=y(x),ics=ics)
 
\[ y{\left (x \right )} = \left (C_{1} + C_{2} \sin {\left (2 x \right )} + C_{3} \cos {\left (2 x \right )}\right ) e^{x} \]