Internal
problem
ID
[2215]
Book
:
Elementary
differential
equations
with
boundary
value
problems.
William
F.
Trench.
Brooks/Cole
2001
Section
:
Chapter
9
Introduction
to
Linear
Higher
Order
Equations.
Section
9.3.
Undetermined
Coefficients
for
Higher
Order
Equations.
Page
495
Problem
number
:
section
9.3,
problem
68
Date
solved
:
Tuesday, September 30, 2025 at 05:25:05 AM
CAS
classification
:
[[_high_order, _linear, _nonhomogeneous]]
ode:=diff(diff(diff(diff(y(x),x),x),x),x)-4*diff(diff(diff(y(x),x),x),x)+14*diff(diff(y(x),x),x)-20*diff(y(x),x)+25*y(x) = exp(x)*((2+6*x)*cos(2*x)+3*sin(2*x)); dsolve(ode,y(x), singsol=all);
ode=D[y[x],{x,4}]-4*D[y[x],{x,3}]+14*D[y[x],{x,2}]-20*D[y[x],x]+25*y[x]==Exp[x]*((2+6*x)*Cos[2*x]+3*Sin[2*x]); ic={}; DSolve[{ode,ic},y[x],x,IncludeSingularSolutions->True]
from sympy import * x = symbols("x") y = Function("y") ode = Eq(((-6*x - 2)*cos(2*x) - 3*sin(2*x))*exp(x) + 25*y(x) - 20*Derivative(y(x), x) + 14*Derivative(y(x), (x, 2)) - 4*Derivative(y(x), (x, 3)) + Derivative(y(x), (x, 4)),0) ics = {} dsolve(ode,func=y(x),ics=ics)